pLUG-Prime[®] TA-Cloning Vector Kit II

For fast ligation using TA-cloning vector

RFF

```
RUO Research Use Only
```

11063 -25 m

-15 %

DESCRIPTION

- pLUG-Prime TA-Cloning Vector Kit II offers a quick, reliable and efficient method for cloning a variety of DNA sequence
- Possible to separate insert DNA from vector using Eco RI restriction enzyme
- More accurate results / Accept a wide range of inserts with different sizes
- Two types of ligation buffers provided for your convenience

INTRODUCTION

TA-cloning technology exploits the terminal transferase activity of some DNA polymerases such as Taq DNA polymerase and other non-proofreading DNA polymerase. These enzymes preferentially add a 3'-end A-overhang to PCR products. This allows the direct insertion of such PCR products into the prelinearized cloning vector, which has a T-overhang on each 3'-end. This eliminates the need for restriction enzyme digestion of the vector or insert, primers with built-in restriction sites, or specially designed adapters, resulting in a much more efficient and robust cloning procedure. This technique is especially useful when compatible restriction sites are not available for the subcloning of DNA fragments. pLUG-Prime® TA-Cloning Vector Kit II contain several engineered restriction-enzyme recognition sites around the TA-cloning site allowing easy restriction analysis of recombinant plasmids or re-cloning to another vector. Especially, the restriction-enzyme recognition sites of pLUG-Prime® TA-Cloning Vector Kit II around the TA-cloning site are more general and simple, which is useful in downstream application such as re-cloning to another vector.

* Features of the pLUG-Prime® TA-Cloning Vector Kit II

• LacZ alpha sequence

The fragment of lacZ alpha sequence in the pLUG-Prime[®] TA-Cloning Vector Kit II is able to complement beta-galactosidase activity. The lacZ alpha sequence reduces the time to screen for positive clones.

Multiple cloning region

The multiple cloning region is located around the TA-cloning site in the pLUG-Prime® TA-Cloning Vector Kit II. The restriction-enzyme recognition sites of pLUG-Prime® TA-Cloning Vector Kit II around the TA-cloning site are located in mirror-repeat pattern.

KIT CONTENTS and STORAGE CONDITION						
Components	Concentration	Volumes				
TA-Cloning Vector II (20 reactions)	25 ng/μl	40 µl				
Control insert DNA	10 ng/µl	10 µl				
T4 DNA ligase	2 U/µl	20 µl				
10X Ligation Buffer A	-	50 µl				
10X Ligation Buffer B	-	50 µl				
Forward Primer (M13-F)	10 µM	50 µl				
Reverse Primer (M13-R)	10 µM	50 µl				
Storage Conditions : -20 $^\circ\!{\rm C}$						

It is recommended for the products to be stored at -20 $^{\circ}$ C. Always avoid multiple freeze-thaw cycles or exposure to frequent temperature changes. These fluctuations can greatly alter stability of product.

CHARACTERISTICS

- High cloning efficiency
- High percentage of true white colony
- · Credible blue/white colony selection
- Rapid procedure (rapid ligation)
- Allowing easy re-cloning to another vector
- · Allowing convenient sequencing (M13 F/R priming sites)

Cloning into the pLUG-Prime® TA-Cloning Vector Kit II

Optimizing insert to vector ratio

For the ligation reaction, the optimal molar ratio of insert (i.e., PCR product) to vector has to be optimized. We recommend using the 5-10 fold molar excess of PCR product over TA-cloning vector. In some cases, a lower ratio of PCR product to vector may be sufficient for efficient ligation. The pLUG-Prime® TA-Cloning Vector Kit II is about 2.73 Kb and the kit suggests adding 50ng (2 μ I) of the vector for the ligation reaction.

Calculated for 50ng vector using the following equation :

ng PCP product required	_50ng × PCR product size (bp)	x molar ratio
ng i on product required	Vector size (bp)	

Table 1. Guide for the amount of PCR product to use in the ligation reaction

PCR product size (bp)	5-times molar excess (ng)	10-times molar excess (ng)
500	45.8	91.6
1,000	91.6	183.3
1,500	137.5	274.9
4,500	412.4	824.8

Protocol for ligation using the pLUG-Prime® TA-Cloning Vector Kit II

1. Centrifuge pLUG-Prime TA-Cloning Vector Kit II and /or PCR DNA tubes to collect contents at the bottom of the tubes.

2. Vortex the ligation buffer vigorously before use.

3. Set up the following items as described below :

Components	Standard control	Positive control
10X Ligation buffer A	1 µl	1 µl
10X Ligation buffer B	1 µl	1 µl
TA-Cloning Vector II	2 µl	2 µl
PCR product	Xμl	-
T4 DNA ligase	1 µl	1 µl
Control DNA	-	3 µl
Deionized Water	Up to	10 µl

* To obtain higher white colonies having insert, we recommend to use the gel-purified PCR product.

5. Incubate the reactions for 5 to 15min at 22 $\ensuremath{\mathbb{C}}$. Alternatively, if the maximum of transformants is required, incubate the reactions overnight at 4 $\ensuremath{\mathbb{C}}$.

6. Implement transformation with appropriate competent cells.

Note :

- 1. To facilitate the A-addition of PCR product, add 10 minutes of extension at 72 $^\circ C$ to the end of the PCR cycling.
- 2. The use of fresh PCR product is strongly recommended. Purification of PCR products prior to ligation will generally result in higher transformation efficiencies. There are several choices to clean up the PCR product. During gel-purification of PCR-products, avoid long exposure to UV-light. To reduce nicking of the DNA, crystal violet staining is an alternative for band visualization.
- 3. PCR products generated using proofreading DNA polymerases such as *Pfu* DNA polymerase can be used in TA-cloning procedures after the addition of a 3'-end A-overhang.
- 4. We recommend using the 5-10-fold molar excess of PCR product over TAcloning vector. In some cases, a lower ratio of PCR product to vector may be sufficient for efficient ligation.
- 5. If you see precipitate in the ligation buffer, warm it briefly at 37 $^\circ\!\!\!\mathrm{C}$ to dissolve the salts. It is important to mix the solutions completely before use to avoid localized concentrations of salts.
- 6. The pLUG-Prime® TA-Cloning Vector Kit II is compatible with a wide range of chemically competent cells which are available from iNtRON. In particular, DH5a competent cells are appropriate to blue/white colony selection and exhibit the high transformation efficiency. Use the 3-10µl aliquot of ligation mixture to transform competent cells.

PROTOCOL for Colony PCR

- 1. Pick an isolated colony with a sterile toothpick, and then, dilute the colony in 20µl of DW. Use the appropriate diluted colony as PCR template.
- 2. Set up program of the thermal cycle

* The setting time of $72\,{}^\circ\!\!\mathbb{C}$ (for example 30 sec) is different according to length of insert DNA. (In general, DNA polymerase can synthesize 1Kb DNA in 1minute.)

- 3. Check the PCR products by using 1% agarose gel :
- When you check the band in the gel, consider the length of insert DNA between M13 forward primer and M13 reverse primer in the vector.

MAP & MULTIPLE CLONING SITE

Figure 1 : Map and sequence reference points of the pLUG-Prime® TA-Cloning Vector II

* Before the insert is incorporated into the pLUG-Prime[®] TA-Cloning Vector II, there is only one *Hind*III site and no *Bg*/II site. After the incorporation, the T and A nucleotide on the insert will complement with the sequence on the vector and generate these two new sites. This merit of pLUG-Prime[®] TA-Cloning Vector II makes cloning more economical and convenient.

Multi	nle Cloning Re	n		434 to 40	0		
wult		gion		-54 10 45			
LacZ	Operator			531 to 548			
LacZ	gene			511 to 149			
Amp	r gene			2528 to 16	571		
T7 pr	romoter			402 to 43	19		
M13	forward prime	r		359 to 37	/5		
M13 reverse primer 507 to 528							
β-lac	β-lactamase coding region 1524 to 2528						
301	TACGCCAGCT ATGCGGTCGA	GGCGAAAGGG CCGCTTTCCC	GGATGTGCTG CCTACACGAC	CAAGGCGATT GTTCCGCTAA	AAGTTGGGTA TTCAACCCAT		
	N	A13 Forward Prim	er				
351	ACCCCACCCT						
	ACGCCAGGGI	TTTCCCAGTC	ACGACGTTGT	AAAACGACGG	CCAGTGAATT		
	TGCGGTCCCA	AAAGGGTCAG	ACGACGTTGT TGCTGCAACA	AAAACGACGG TTTTGCTGCC	CCAGTGAATT GGTCACTTAA		
	TGCGGTCCCA	TTTCCCAGTC AAAGGGTCAG	ACGACGTTGT TGCTGCAACA	AAAACGACGG TTTTGCTGCC (pn <u>Sma </u>	CCAGTGAATT GGTCACTTAA <u>EcoR I Hind</u> III		
401	TGCGGTCCCA	TTTCCCAGTC AAAGGGTCAG noter TCACTATAGG	ACGACGTTGT TGCTGCAACA <u>Sac1</u> k GCGAGCTCGG	AAAACGACGG TTTTGCTGCC (pn <u>Sma </u> TACCCGGGCG	CCAGTGAATT GGTCACTTAA <u>EcoR I Hind</u> III AATTCCAAGC		
401	GTAATACGAC CATTATGCTG	TTTCCCAGTC AAAGGGTCAG noter TCACTATAGG AGTGATATCC	ACGACGTTGT TGCTGCAACA <u>Sac I k</u> GCGAGCTCGG CGCTCGAGCC	AAAACGACGG TTTTGCTGCC (pn 1 <u>Sma 1</u> TACCCGGGCCG ATGGGCCCGC	CCAGTGAATT GGTCACTTAA <u>ECOR I Hind</u> III AATTCCAAGC TTAAGGTTCG		
401	TGCGGTCCCA T7 Pron GTAATACGAC CATTATGCTG	TTTCCCAGTC AAAGGGTCAG TCACTATAGG AGTGATATCC Bg/11 Ban	ACGACGTTGT TGCTGCAACA <u>Sac 1 k</u> GCGAGCTCGG CGCTCGAGCC mH 1 <u>Xba 1</u>	AAAACGACGG TTTTGCTGCC (pn 1 <u>Sma 1</u> TACCCGGGCG ATGGGCCCGC _Sal 1Pst	CCAGTGAATT GGTCACTTAA EcoR I Hind III AATTCCAAGC TTAAGGTTCG		
401 451	T T CATTATGCTG	AAAGGGTCAG TCACTATAGG AGTGATATCC <u>Bg/II</u> <u>Bar</u> -A GATCTGGAT T CTAGACCTA	ACGACGTTGT TGCTGCAACA Sac1K GCGAGCTCGG CGCTCGAGCC <u>mH1Xba1</u> CCCCTCTAGA GGGGAGATCT	AAAACGACGG TTTTGCTGCC (pn 1 Sma 1 TACCCGGGCG ATGGGCCCGC <u>Sal 1 Pst</u> GTCGACCTGC CAGCTGGACG	CCAGTGAATT GGTCACTTAA AATTCCAAGC TTAAGGTTCG :1 <u>Sph 1</u> AGGCATGCAA TCCGTACGAT		
401 451	TT Pron GTAATACGAC CATTATGCTG TT T A A- DNA	AAAGGGTCAG noter TCACTATAGG AGTGATATCC -A GATCTGGAT T CTAGACCTA	ACGACGTTGT TGCTGCAACA <u>Sac 1</u> <u>k</u> GCGAGCTCGG CGCTCGAGCC <u>mH1 <u>Xba 1</u> CCCCTCTAGA GGGGAGATCT</u>	AAAACGACGG TTTTGCTGCC (pn 1 <u>Sma 1</u> TACCCGGGCC ATGGGCCCGC <u>Sal 1 Pst</u> GTCGACCTGC CAGCTGGACG	CCAGTGAATT GGTCACTTAA ATTCCAAGC TTAAGGTTCG <u>Sph 1</u> AGGCATGCAA TCCGTACGTT		
401 451	TGCGGTCCA T7 Pron GTAATACGAC CATTATGCTG T T A A- Insert DNA	TTTCCCAGTC AAAGGGTCAG TCACTATAGG AGGGATATCG -A GATCTGGAT T CTAGACCTA coR 1	ACGACGTTGT TGCTGCAACA <u>Sac1 k</u> GCGAGCTCGG CCGCTCGAGCC <u>mH1 xba1</u> CCCCTCTAGA GGGGAGATCT	AAAACGACGG TTTTGCTGCC Spn 1 Sma 1 TACCCGGGGG ATGGGCCCGC GTCGACCTGC CAGCTGGACG	CCAGTGAATT GGTCACTTAA EcoR 1 Hind III AATTCCAAGC TTAAGGTTCG AGCATGCAA AGCATGCAA TCCGTACGTT		
401 451 491	TGCGGTCCCA T7 Pron GTAATACGAC CATTATGCTG T T A A- NAA Hind III GCTTGGCGGA	TTTCCCAGTC AAAGGGTCAG noter TCACTATAGG AGTGATATCC 	ACGACGTTGT TGCTGCAACA <u>Sac1</u> <u>A</u> CCGACCTCGG CGCTCGAGCC <u>mH1 Xba1</u> CCCCTCTAGA GGGGAGATCT TAGCTGTTTC ATCGACAAAG	AAAACGACGG TTTTGCTGCC (pn Sma TACCCGGGCG ATGGGCCCGC Sal Pst GTCGACCTGC CAGCTGGACA CTGTGTGAAAA GACACACTTT	CCAGTGAATT GGTCACTTAA FCCR 1 Hind III AATTCCAAGC TTAAGGTTCG 1 Sph 1 AGGCATGCAA TCGTACGTA TTGTTATCCG AACAATAGGC		

Figure 2 : Multiple cloning site sequence of the pLUG-Prime® TA-Cloning Vector II

SUGGESTIONS

- 1. Avoid multiple freeze-thaw cycles and exposure to frequent temperature changes by preparing single-use aliquots of Ligation Buffers.
- Pfu DNA polymerase possesses proofreading activity; it does not have the terminal transferase-like activity like Taq DNA polymerase. Ligation reactions using Pfu amplified DNA containing no A-tails will result in no positive colonies.
- 3. Methods for increasing the ligation efficiency :

g :	Purified PCR product	Χ μΙ
	10X PCR buffer	10 µl
	10mM dATP	2 µl
	Taq	1µl

I. Add deionized water to a final volume of 100ul.

II.Incubate at 72 $^\circ\!\!\mathbb{C}$ for 1 hrs.

A. A-tailin

- III.Purify the A-tailed DNA and use it in the ligation reaction.
- B. If the maximum of tranformants is required, incubate the reactions overnight at $4\,{}^\circ\!\mathrm{C}.$
- C. The optimal efficiency can be achieved by using a 1:3 molar ratio of vector DNA to the insert DNA.
- D. Use competent cells with higher efficiency such as MacCellTM (>10⁸ cfu/ μ g DNA) series for transformation.
- 4. Using the colony PCR technique, clones can be screened easily and precisely.

A. Colonies transformed by using pLUG-Prime® TA-Cloning Vector Kit II.

(The colony, which is the result of TA-cloning by using pLUG-Prime® TA-Cloning Vector Kit II, was used as the

template DNA for PCR.)

B. The gel analysis of the PCR products ligated by pLUG-Prime® TA-Cloning Vector Kit II.

Restriction Enzyme sites of pLUG-Prime® TA-Cloning Vector Kit II

Enzyme	Position	Enzyme	Position	Enzyme	Position	Enzyme	Position	Enzyme	Position
Aat II	2664	Ava I	434	Cfr 10I	1822	Mam I	457	Sph I	488
Acc 65I	430	Ban II	428	Dra II	2718	Nar I	237	Ssp I	2546
Acc I	473	Bam HI	458	Eam 1105I	1742	Nde I	185	Xbal	466
Afl III	849	Bcg I	2281	Ecl 136II	426	Pst I	482	Xma I	434
Ahd I	1742	Bpm I	1812	Eco 0109I	2718	Sac I	428	Xmn I	2341
Alw NI	1265	Bsa Bl	457	Hin cll	474	Sal I	472		
Asp 700	2341	Bsa I	1803	Hin dll	474	Sap I	733		
Asp 718	430	Bsp MI	485	Ksa I	236	Sca I	2222		
Asp El	1742	Bsr Fl	1822	Kpn I	434	Sma I	436		

Restriction Enzyme sites of pLUG-Prime® TA-Cloning Vector Kit II

Aatl	Bbsl	BsmFl	BstXI	EcoNI	Munl	PaeR7I	SexAl	Tth1111
AccIII	Bcll	Bsml	Bsu36l	EcoRV	Nael	PfIMI	Sfil	Van91I
Af/II	Bfrl	Bsp120I	Ce/II	Espl	Ncol	PinAl	Sful	Xcml
Agel	Blnl	BspDI	Clal	Hpal	NgoMI	PmaCl	SgrAl	Xhol
Apal	Bpu1102I	BspEl	Csp45I	Kspl	Nhel	Pmel	SnaBl	Xmalll
Ascl	BpuAl	BsrGI	Dralll	Mfel	Notl	Pmll	Spel	
Aspl	BsaAl	BssHll	Dsal	Mlul	Nrul	Ppu10I	SspBI	
Asull	BseAl	Bst1107I	Eagl	MluNI	Nsil	PpuMI	Stul	
Avrll	Bsgl	BstBl	EclXI	Mrol	NspV	Rsrll	Styl	
Bbr PI	BsiWI	BstEll	Eco47III	Mscl	Pacl	Sacll	Swal	

TROUBLE SHOOTING GUIDE

This troubleshooting guide may be helpful in solving problems that may frequently arise. The scientists at iNtRON are always happy to answer any questions you may have about the information or protocol in this manual or other molecular biology applications.

Problem / Possible o	use Recommendation
No colony was obtain	ed from transformation
1)Bacteria were not competent	 Check the transformation efficiency of competent cells used. Vortex the ligation buffer vigorously before use. We recommend using highly competent cells (≥1.0×10⁸ cfu/µg circular plasmid DNA).
2)Incorrect transformation procedure	 Make sure that the appropriate transformation procedure was used.
3)Use of incorrect antibiotic on plates	 Agar plates should include ampicillin; Check the ampicillin concentration added to the plates; Use fresh antibiotic plates
1	lenies

Low number of white colonies

used in

transformation

was insufficient

inhibitor in PCR

4)Presence of

mixture

UV-light

- 1)A-tailing of the • Verify that PCR amplification was performed using Tag PCR product was DNA polymerase; Use fresh PCR products. Efficiency not efficient may be reduced within a day because of loss of Aoverhang of PCR products. 2)Insert to vector
- · Use the 5-10-fold molar excess of PCR product over TAratio was too low cloning vector. 3)Ligation mixture
 - · Increase the amount of the ligation mixture added to the transformation reaction or increase the amount of the transformants plated.
 - . The high salt content of PCR reactions can inhibit ligation and transformation. Though your PCR product is shown as single band, purify the PCR product prior to ligation.
- 5)Overexposure of • If the PCR product is gel-purified, the PCR product PCR product to should be exposed to long-wave UV-light for as short a time as possible. Overexposure of PCR product to UV-light will lead to the formation of pyrimidine dimers that can not be ligated efficiently.

Recommendation

White colonies did not have insert

1)Cells transformed with residual plasmid DNA from PCR reaction

TA-cloning vector

Problem / Possible cause

- If the PCR template was plasmid DNA containing the resistance gene for the antibiotic used for colony selection, colonies may be shown on the following transformation. In that case, PCR product should be gel-purified prior to ligation reaction
- 2)Non-specific PCR · Gel-purify the PCR product prior to performing the TA-cloning products or primerreaction; Verify that the PCR primer design and quality. dimers cloned into

Only white colonies were obtained

1)No IPTG or X-gal in · X-gal has to be included in the plate for blue/white colony plates selection. If you use competent cell whose genotype shows lacl^q, it requires IPTG to induce expression from the lac promoter.

2)Inappropriate bacterial strain was used for blue/white colony selection

· Ensure that the bacterial strain used for transformation has lacIqZ∆M15 genotype.

Most colonies were blue or light

1)The insert does not blue interrupt the reading-frame of the lacZ gene

2)Inappropriate bacterial strain was used for blue/white colony selection 3)Self-ligation of TAcloning vector

- If the insert is small (<300bp) and the number of its bases including the 3'-end A-overhang is multiple of 3, the recombinant colony may be light blue.
- · Ensure that the bacterial strain used for transformation carries lacZ mutation. Phenotype of colony is always blue which is in lacZ⁺ strains.
- · Frequent freezing/thawing may induce loss of 3'-end Toverhang in the TA-cloning vector. Loss of the T-overhangs is the cause of the ligation of vector itself in blunt-end and the colony is shown up as blue; Nuclease may degrade the Toverhang in TA-cloning vector. Use only the provided distilled water and ligation buffer in the ligation reaction.

ORDERING INFORMATION

Product Name	Amount	Cat. No.
MEGAquick-spin™ PLUS Total Fragment DNA Purification Kit	50/200 col.	17289/17290
pLUG-Prime® TA-Cloning Vector Kit	20 rxn.	11061
DNA-spin [™] Plasmid DNA Purification Kit	50/200 col.	17096/17098
DNA-midi [™] GT Plasmid DNA Purification Kit	25 col.	17254
MacCell™ DH5α (10 ⁷)	1 ml	15052
MacCell™ DH5α (10 ⁸)	1 ml	15053
MacCell™ DH5α (10⁰)	1 ml	15054
Maxime™ PCR PreMix (i-Taq)	96 tubes	25025
Maxime™ PCR PreMix (i-StarTaq)	96/480 tubes	25165/25167
Maxime [™] PCR PreMix (i-MAX Ⅱ)	96 tubes	25265
LINKeed ${}^{\textcircled{R}}$ Rapid DNA Ligation Kit (Version 2.0)	30 rxn.	15023

Technical support: +82-505-550-5600

Review date : 2014. 4. 1

