SMARTTM BCA Protein Assay Kit [for Standard Assay]

Cat. No. 21071

Test Tube : 250 Tests Microplate : 2,500 Tests

DESCRIPTION

The SMART[™] BCA Protein Assay Kit (for Standard Assay) is a detergent-compatible formulati on based on bicinchoninic acid (BCA) for the colorimetric detection and quantitation of total protein. The purple-colored reaction product of this assay is formed by the chelation of two molecules of BCA with one cuprous ion. This water-soluble complex exhibits a strong absorb ance at 562 nm that is nearly linear with increasing protein concentrations over a broad worki ng range (20-2,000µg/ml).

The macromolecular structure of protein, the number of peptide bonds and the presence of f our particular amino acids (cysteine, cystine, tryptophan and tyrosine) are reported to be resp onsible for color formation with BCA. Studies with di-, tri- and tetrapeptides suggest that the extent of color formation caused by more than the mere sum of individual colorproducing fun ctional groups. Accordingly, protein concentrations generally are determined and reported wit h reference to standards of a common protein such as bovine serum albumin (BSA). A series of dilutions of known concentration are prepared from the protein and assayed alongside th e unknown(s) before the concentration of each unknown is determined based on the standar dcurve.

Two assay procedures are presented. Of these, the Test Tube Procedure requires a larger volu me (0.1 ml) of protein sample; however, because it uses a sample to working solution ratio of 1:20 (v/v), the effect of interfering substances is minimized. The Microplate Procedure affor rds the sample handling ease of a microplate and requires a smaller volume (10-25 μ l) of pro tein sample; however, because the sample to working solution ratio is 1:8 (v/v), it offers less flexibility in overcoming interfering substance concentrations and obtaining low levels of detection.

250 ml x 2 ea

1 ml x 10 ea

10 ml

CHARACTERISTICS

- · Colorimetric method; read at 562 nm
- Compatible with most ionic and nonionic detergents
- Faster and easier than the Lowrymethod
- All reagents stable at room temperature for 2 years
- Working Solution stable for 24 hours
- Linear working range for BSA : 20-2,000µg/ml
 Adaptable to microplates
- Less protein-to-protein variation than dye-binding methods

KIT CONTENTS

Solution A

Solution B

BSA solution (2 mg/ml)

STORAGE

Upon receipt, store at room temperature. Product shipped at ambient temperature. **Note :** If e ither Solution A or Solution B precipitates upon shipping in cold weather or during long-term s torage, dissolve precipitates by gently warming and stirring solution. Discard any kit reagent t hat shows discoloration or evidence of contamination.

PREPARATION of STANDARDS and WORKING SOLUTION

[Preparation of Standard]

Use Table 1 as a guide to prepare a set of protein standards. Dilute the contents of one BSA Solution tube into several clean vials, preferably using the same diluent as the sample(s). Eac h 1 ml tube of 2.0 mg/ml BSA Solution is sufficient to prepare a set of diluted standards for either working range suggested in Table 1.

Table 1. Preparation of Diluted Albumin (BSA) Standards

Tube	Volume of Diluent	Volume & Source of BSA	Final Conc.
1	0	300 µl of Stock	2,000 µg/ml
2	125 µl	375 µl of Stock	1,500 µg/ml
3	325 µl	325 µl of Stock	1,000 µg/ml
4	325 µl	325 µl of tube 3 dilution	500 µg/ml
5	325 µl	325 µl of tube 4 dilution	250 µg/ml
6	325 µl	325 µl of tube 5 dilution	125 µg/ml
7	400 µl	100 µl of tube 6 dilution	25 µg/ml
8	400 µl	0	0 µg/ml = Blank

[Preparation of Working Solution]

Before use, prepare Working Solution (WS) by mixing 50 parts of Solution A with 1 part of Sol ution B (50:1, Solution A:B).

For the above example, combine 50 ml of Solution A with 1 ml of Solution B.

Note: When Solution B is first added to Solution A, a turbidity is observed that quickly disapp ears upon mixing to yield a clear, green WS. Prepare sufficient volume of WS based on the nu mber of samples to be assayed. The WS is stable for several days when stored in a closed co ntainer at room temperature(RT).

ADDITIONAL INFORMATION

A. Interfering substances

Certain substances are known to interfere with the SMART[™] BCA Protein Assay including thos e with reducing potential, chelating agents, and strong acids or bases. Because they are known to interfere with protein estimation at even minute concentrations, avoid the following s ubstances as components of the sample buffer:

Ascorbic Acid C	EGTA	Iron L	Impure Sucrose
atecholamines C	Impure Glycerol	ipids	Tryptophan Tyro
reatinine Cystein	Hydrogen Peroxide	Melibiose	sine
e	Hydrazides	Phenol Red	Uricacid

Other substances interfere to a lesser extent with protein estimation using the SMART[®] BCA Protein Assay, and these have only minor (tolerable) effects below a certain concentration in the original sample. Substances were compatible at the indicated concentration in the Stand ard Test Tube Protocol if the error in protein concentration estimation caused by the presence of the substance in the sample was less than or equal to 10%. The substances were tested us ing WS prepared immediately before each experiment. Blank-corrected 562 nm absorbance m easurements (for a 1,000 µg/ml BSA standard + substance) were compared to the net 562 nm measurements of the same standard prepared in 0.9% saline. In the Microplate Procedur e, where the sample to WS ratio is 1:8 (v/v), maximum compatible concentrations will be lo wer.

B. Strategies for eliminating or minimizing the effects of interfering su bstances

The effects of interfering substances in the SMART[™] BCA Protein Assay may be eliminated or overcome by one of several methods.

- Remove the interfering substance by dialysis or gelfiltration.
- Dilute the sample until the substance no longer interferes. This strategy is effective only if t
 he starting protein concentration is sufficient to remain in the working range of the assay u
 pon dilution.
- Precipitate the proteins in the sample with acetone or trichloroacetic acid (TCA). The liquid containing the substance that interfered is discarded and the protein pellet is easily solubili zed in ultrapure water or directly in the alkaline SMART[™] BCA WS.
- Increase the amount of copper in the Ws (prepare WS as 50:2 or 50:3, Solution A:B), which
 may eliminate interference by copper chelating agents.

Note: For the greatest accuracy, the protein standards must be treated identically to the samp le(s).

PROTOCOL (for Microplate, Sample to WS ratio = 1:8)

1. Pipette 25 μ l of each standard or unknown sample replicate into a microplate well (workin g range = 20-2,000 μ g/ml).

Note : If sample size is limited, 10 μ l of each unknown sample and standard can be used (sample to Working Solution ; WS ratio = 1:20). However, the working range of the assay in t his case will be limited to 125-2,000 μ g/ml.

2. Add 200 µl of the Working Solution (WS) to each well and mix plate thoroughly on a plate s haker for 30 seconds.

Note : To preparation of Working Solution (WS), see the "PREPARATION of STANDARDS a nd WORKING SOLUTION"

- 3. Cover plate and incubate at 37°C for 30 minutes.
- 4. Cool plate to room temperature(RT).
- Measure the absorbance at or near562 nm on a plate reader.
 Note : Wavelengths from 540-590 nm have been used successfully with this method. If hig her 562 nm measurements are desired, increase the incubation time to 2 hours.
- Subtract the average 562 nm absorbance measurement of the Blank standard replicates from the 562 nm measurements of all other individual standard and unknown s ample replicates.

- 7. Subtract the average 562 nm absorbance measurement of the Blank standard replicates f rom the 562 nm measurements of all other individual standard and unknown sample replic ates.
- 8. Prepare a standard curve by plotting the average Blank-corrected 562 nm measurement for each BSA standard vs. its concentration in μ g/ml. Use the standard curve to determine the protein concentration of each unknown sample.

Note: If using curve-fitting algorithms associated with a microplate reader, a four- param eter (quadratic) or best-fit curve will provide more accurate results than a purely linear fit. I f plotting results by hand, a point-to-point curve is preferable to a linear fit to the standard points.

PROTOCOL (for Test Tube, Sample to WS ratio = 1:20)

- 1. Pipette 0.1 ml of each standard and unknown sample replicate into an appropriately labele d test tube.
- 2. Add 2 ml of the Working Solution (WS) to each tube and mix well.
- 3. Cover and incubate tubes at 37°C for 30minutes.
- 4. Cool all tubes to room temperature(RT).
- 5. With the spectrophotometer set to 562 nm, zero the instrument on a cuvette filled only with water. Subsequently, measure the absorbance of all the samples within 10 minut es.

Note : Because the SMART[™] BCA Assay does not reach a true end point, color developmen t will continue even after cooling to RT. However, because the rate of color development is low at RT, no significant error will be introduced if the 562 nm absorbance measurements of all tubes are made within 10 minutes of eachother.

- Subtract the average 562 nm absorbance measurement of the Blank standard replicates f rom the 562 nm absorbance measurement of all other individual standard and unknown s amplereplicates.
- Prepare a standard curve by plotting the average Blank-corrected 562 nm measurement for each BSA standard vs. its concentration in µg/ml. Use the standard cur ve to determine the protein concentration of each unknown sample.

TROUBLESHOOTING GUIDE

a Active	1	7	
Problem	Possible Cause	Solution	
No color in any tubes	Sample contains a cop per chelating agent	Dialyze, desalt, or dilute sample In crease copper concentration in w orking solution (e.g., use 50:2, Sol ution A:B)	
Blank absorbanceis OK, but standards an d samples show less	Strong acid or alkaline buffer, alters working r eagent pH	Dialyze, desalt, or dilute sample	
color than expected Color of samples	Color measured at the w rong wavelength Protein concentration is	Measure the absorbance at 562 nm	
appears darker than	too high	Dilute sample	
expected Sample contains lipids or Add 2% SDS to the sample to			
	Lipoproteins Buffer contains a	eliminate interference from lipids Dialvze or dilute sample	
All tubes (including		,	
blank) are dark purple re	ducing agent		
	Buffer contains a thiol Buf fer contains biogenic ami nes (catecholamines) Spe ctrophotometer or		
Need to measure c olor at a different wavelength	plate reader doesnot have 562 nm filter	Color may be measure at any wav elength between 540 nm and 590 n m, although the slope of standard curve and overall assay sensitivity will be reduced	

EXPERIMENTAL DATA

IMPROVED SENSITIVITY & LINEAR WORKING RANGE

Fig. 1. Comparison of sensitivity of proteinassay.

SMART™ BCA Protein Assay Kit (for Standard Assay) shows improved sensitivity higher than Competitor product as 15~20%.

The color response was estimated micro well plate reader (37°C/30 minute incubation).

Fig. 2. Typical Color response curves for BSA, Chymotrypsin and Lysozyme using the Micro plate Protocol.

Absorbance ratios (562 nm) for proteins relative to BSA. The SMART[™] BCA Protein Assay Kit (for Standard Assay) showed higher sensitivity (slope) than Competitor. However, The Protein to-Protein variations showed similar patterns

A; SMART[™] BCA Protein Assay Kit, B; Competitor A Product

RELATED PRODUCT

Product Name	Cat. No.
PRO-PREP™Protein Extraction Solution (C/T)	17081
SMART [™] Bacterial Protein Extraction Solution	17511
PRO-MEASURE™Protein Measurement Solution	21011
PRO-STAIN™(I) Prestained Protein Marker	24051
SMART™ micro BCA Protein Assay Kit (for Micro Assay)	21072
WEST-one™Western Blot Detection System	16031 ~16033
WEST-ZOL® plus Western Blot Detection System	16021

